skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murúa, Maureen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Calceolaria (Calceolariaceae) is an emblematic and diverse genus in the Americas. Despite being one of the most easily recognized genera in the region and a system with great potential to improve our understanding of different drivers of species diversification in the Andes, its intrageneric evolutionary relationships are still poorly understood. Responding to the need for additional molecular markers to resolve the phylogenetic relationships of the group, we perform plastome analyses and resolve the backbone of the genus. Specifically, using low-coverage genomes for 14 species, we assembled plastomes, estimated and dated phylogenetic hypotheses and evaluated evolutionary trends in the group. Our approach allowed us to resolve the backbone of the genus, identify two main clades and estimate a timing of diversification contemporaneous to major climatic and orogenic events. Our biogeographic reconstructions suggest an independent colonization of the whole range of the genus by both clades. Finally, our evaluations of floral morphology reveal future avenues for investigating the relationship between the pollination biology and diversification of the group. 
    more » « less
  2. A widespread adaptive change in antiherbivore response is seen in a common plant species in urban environments across 160 cities. 
    more » « less